Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Saudi Pharm J ; 32(5): 102058, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38601973

RESUMO

Background: Skin is regarded as an essential first line of defense against harmful pathogens and it hosts an ecosystem of microorganisms that create a widely diverse skin microbiome. In chronic wounds, alterations in the host-microbe interactions occur forming polymicrobial biofilms that hinder the process of wound healing. Ribavirin, an antiviral drug, possesses antimicrobial activity, especially against Pseudomonas aeruginosa and Candida albicans, which are known as the main opportunistic pathogens in chronic wounds. Rationale: In this study, electrospun nanofiber systems loaded with ribavirin were developed as a potential wound dressing for topical application in chronic wounds. Ribavirin was chosen in this study owing to the emerging cases of antimicrobial (antibiotics and antifungal) resistance and the low attempts to discover new antimicrobial agents, which encouraged the repurposing use of current medication as an alternative solution in case of resistance to the available agents. Additionally, the unique mechanism of action of ribavirin, i.e., perturbing the bacterial virulence system without killing or stopping their growth and rendering the pathogens disarmed, might be a promising choice to prevent drug resistance. Cyclodextrin (CD) was utilized to formulate ribavirin as an electrospun nanofibers delivery system to enhance the absorption and accelerate the release of ribavirin for topical use. Results: The results demonstrated a successful ribavirin nanofibers fabrication that lacked beads and pores on the nanofibrous surfaces. Ribavirin underwent a physical transformation from crystalline to amorphous form, as confirmed by X-ray diffraction analysis. This change occurred due to the molecular dispersion after the electrospinning process. Additionally, the CD enhanced the encapsulation efficiency of ribavirin in the nanofibers as observed from the drug-loading results. Polyvinylpyrrolidone (PVP) and CD increased ribavirin released into the solution and the disintegration of fibrous mats which shrank and eventually dissolved into a gel-like substance as the ribavirin-loaded fibers began to break down from their border toward the midpoint. Cytotoxicity of ribavirin and CD was evaluated against human dermal fibroblasts (HFF-1) and the results showed a relatively safe profile of ribavirin upon 24-hour cell exposure, while CD was safe within 24- and 48-hour. Conclusion: This study provides valuable insights into the potential application of our nanofibrous system for treating chronic wounds; however, further antimicrobial and in-vivo studies are required to confirm its safety and effectiveness.

2.
Saudi Pharm J ; 31(8): 101674, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37448843

RESUMO

Background: Pharmaceutical nanomedicine products are expected to impact the global pharmaceutical market and healthcare system significantly. Since 2000, the Food and Drug Administration (FDA) and European Medicines Agency (EMA) have approved over 80 nanomedicine products for marketing; an additional double that number is currently being tested in clinical trials. The nanomedicine market is expected to reach USD 350.8 billion by 2025 from USD 138.8 billion in 2016. This demonstrates the importance of nanotechnology to the delivery of pharmaceuticals. The main benefits of employing nanotechnology to distribute therapeutic agents include reducing the undesired toxicity from non-specific distribution and increasing patient adherence, which can indirectly minimize the burden on the country's healthcare system. Such products are expected to gain a significant economic impact on Saudi Arabia's pharmaceutical drugs market once they get developed locally. Method: A descriptive and cross-sectional study, including a web-based questionnaire and a complete categorization of pharmaceutical products formed by the national industries in Saudi Arabia, was utilized to investigate the current and future direction of pharmaceutical manufacturing exploiting nanotechnology in the Kingdom. Results: The survey showed an apparent lack of willingness within the national pharmaceutical industries, as the majority (≈ 86%) of the leading Saudi companies cannot enable nanotechnology-based medicines in their manufacturing. However, more than 93% of the national pharmaceutical industries, upon the basis of the responses, agreed that the development of pharmaceutical products with nanotechnology is an important step toward solving various complications associated with conventional forms of the available medicine. Conclusion: National pharmaceutical industries in Saudi Arabia will need to get closer to manufacturing nanomedicines by partnering with international pioneer companies. In addition, empowering the local research and development (R&D) centers in nano delivery systems could facilitate translating their R&D outcomes into novel advanced and commercialized products. This could imitate the direction of the global pharmaceutical market and share its revenue which will positively reflect on the Kingdom's economy.

3.
J Infect Public Health ; 16(1): 34-41, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36459709

RESUMO

BACKGROUND: Antibiotic overuse and misuse have greatly facilitated the development of antimicrobial resistance (AMR). The Kingdom of Saudi Arabia is one of the countries that took a strategic approach, beginning with the prohibition of over-the-counter antibiotic dispensing, followed by the implementation of antimicrobial stewardship programs and various educational and awareness governmental activities and plans. However, the status of antibiotic prescriptions and dispensing in Saudi community pharmacies is still unclear. As a result, this study investigates community pharmacists' antibiotic dispensing practices and their knowledge of their role in fighting AMR, in addition to the status of antibiotic prescribing errors by physicians. METHOD: This is an online-based survey study of 671 participants distributed among community pharmacists of large pharmacy chains throughout the Saudi Arabia. RESULT: A number of 671 community pharmacists were participated in total, with a response rate of 96.57% (648 responses). The majority of community pharmacists (67%) had a long experience (>5 years) in this field. An antibiotic prescribing error was prevalent, with a mean of 3.32 per month in each pharmacy. Dentists (36.7%) and general practitioners (28.7%) were the most prescribers associated with antibiotic prescription errors. Most community pharmacists had a generally good practice of dispensing antibiotics, accounting for 71.5% of daily antibiotic dispensing. However, more than one-third of those pharmacists (35.2%) agreed on dispensing topical antibiotics without a prescription, based on their evaluation of the case presented in the pharmacy, as the majority of community pharmacists demonstrated a significant understanding of AMR. CONCLUSION: The current study demonstrated that there is a good antibiotic dispensing practice in the community pharmacies in Saudi Arabia, in addition to a substantial understanding of the community pharmacist's vital role in fighting AMR. This study could inform decision-makers on antibiotic usage in Saudi community pharmacies to improve the current inappropriate antibiotic use and dispensing situation and, thus, control AMR spread in Saudi Arabia.


Assuntos
Antibacterianos , Farmacêuticos , Humanos , Antibacterianos/uso terapêutico , Arábia Saudita , Prescrições de Medicamentos , Estudos Transversais , Farmacorresistência Bacteriana
4.
Pharmaceutics ; 14(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36559120

RESUMO

Flibanserin was licensed by the United States Food and Drug Administration (FDA) as an oral non-hormonal therapy for pre-menopausal women with inhibited sexual desire disorder. However, it suffers from susceptibility to first-pass metabolism in the liver, low aqueous solubility, and degradation in the acidic stomach environment. Such hurdles result in a limited oral bioavailability of 33%. Thus, the aim of the study was to utilize the principles of nanotechnology and the benefits of an intranasal route of administration to develop a formulation that could bypass these drawbacks. A response-surface randomized D-optimal strategy was used for the formulation of flibanserin spanlastics (SPLs) with reduced size and increased absolute zeta potential. Two numerical factors were studied, namely the Span 60: edge activator ratio (w/w) and sonication time (min), in addition to one categorical factor that deals with the type of edge activator. Particle size (nm) and zeta potential (mV) were studied as responses. A mathematical optimization method was implemented for predicting the optimized levels of the variables. The optimized formulation was prepared using a Span: sodium deoxycholate ratio of 8:2 w/w; a sonication time of 5 min showed particle sizes of 129.70 nm and a zeta potential of -33.17 mV. Further in vivo assessment following intranasal administration in rats showed boosted plasma and brain levels, with 2.11- and 2.23-fold increases (respectively) compared to raw FLB. The aforementioned results imply that the proposed spanlastics could be regarded as efficient drug carriers for the trans-nasal delivery of drugs to the brain.

5.
Biomedicines ; 10(9)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36140283

RESUMO

Therapeutic gene silencing in the brain is usually achieved using highly invasive intracranial administration methods and/or comparatively toxic vectors. In this work, we use a relatively biocompatible vector: poly(ethylene glycol) star-shaped polymer capped with amine groups (4APPA) via the nose to brain route. 4APPA complexes anti- itchy E3 ubiquitin protein ligase (anti-ITCH) siRNA to form positively charged (zeta potential +15 ± 5 mV) 150 nm nanoparticles. The siRNA-4APPA polyplexes demonstrated low cellular toxicity (IC50 = 13.92 ± 6 mg mL-1) in the A431 cell line and were three orders of magnitude less toxic than Lipofectamine 2000 (IC50 = 0.033 ± 0.04 mg mL-1) in this cell line. Cell association and uptake of fluorescently labelled siRNA bound to siRNA-4APPA nanoparticles was demonstrated using fluorescent activated cell sorting (FACS) and confocal laser scanning microscopy (CLSM), respectively. Gene silencing of the ITCH gene was observed in vitro in the A431 cell line (65% down regulation when compared to the use of anti-ITCH siRNA alone). On intranasal dosing with fluorescently labelled siRNA-4APPA polyplexes, fluorescence was seen in the cells of the olfactory bulb, cerebral cortex and mid-brain regions. Finally, down regulation of ITCH was seen in the brain cells (54 ± 13% ITCH remaining compared to untreated controls) in a healthy rat model, following intranasal dosing of siRNA-4APPA nanoparticles (0.15 mg kg-1 siRNA twice daily for 3 days). Gene silencing in the brain may be achieved by intranasal administration of siRNA- poly(ethylene glycol) based polyplexes.

6.
Life (Basel) ; 12(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35888184

RESUMO

Diabetic hyperglycemia delays wound healing, leading to serious consequences. Topical antibiotics can reduce the risk of a wound infection during healing; nevertheless, the microbial fight against antibiotics brings about public health challenges. Anti-microbial peptides (AMPs) belong to a novel class of drug that is used to prevent and treat systemic and topical infections. The aim of the current work was to achieve better wound healing in diabetic rats by conjugating the anti-microbial peptide "apamin" (APA) with the broad-spectrum antibiotic "ceftriaxone" (CTX) to form a nanocomplex. The CTX-APA nanoconjugate formulation was optimized using a Box-Behnken design. The optimized CTX-APA nanoconjugate formulation was evaluated for its size and zeta potential, and was then examined using transmission electron microscopy (TEM). The CTX-APA nanoconjugate was loaded onto a hydroxypropyl methylcellulose (2% w/v)-based hydrogel. It was observed that the application of the CTX-APA nanocomplex on the wounded skin of diabetic rats accelerated the regeneration of the epithelium, granulation tissue formation, epidermal proliferation, and keratinization. The nanocomplex was capable of significantly reducing the expression of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), while increasing the expression of transforming growth factor beta-1 (TGF-ß1) as well as the angiogenic markers: hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF). Conclusively, the application of an ion-paired CTX-APA nanocomplex enhances wound healing in diabetic rats.

7.
AAPS PharmSciTech ; 23(1): 46, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34984577

RESUMO

The in vitro dissolution of Avanafil (AVA) is the rate-limiting step for its bioavailability. Also, it undergoes the first-pass metabolism, and its absorption is altered significantly in the presence of food. So, our study aimed to overcome the previous hurdles and improve the AVA bioavailability by its incorporation in the ultra-deformable nanovesicles, transfersomes (TRF), then loading these nanovesicles in transdermal films. The AVA-loaded TRF formulation was optimized using Draper-Lin small composite design (D-LSCD). The optimized AVA-loaded TRF was evaluated for quality attributes and assessed for skin permeation using a fluorescence laser microscope and for pharmacokinetic parameters after topical application on the rats. The optimized AVA-loaded TRF showed a vesicle size of 97.75 nm, a zeta potential of -28.83 mV, and entrapment efficiency of 95.14% with good deformability and release profile. The intense discoloration in the deep skin layers of the rats indicated the permeation efficiency of AVA-loaded TRF films. The pharmacokinetic parameters specified the augmented absorption extent with Cmax of 254.66 ± 8.02 ng/mlversus 70.33 ± 3.05 ng/ml which reflected on the AUC0-inf that has a value of 2050.45 ± 159.14 ng/ml h versus 497.34 ± 102.61 ng/ml h for the optimized AVA-loaded TRF film and raw AVA-loaded film, respectively. These promising results wide open the field for broader clinical application of this alternative delivery pathway for superior bioavailability, efficacy, and patient compliance and satisfaction.


Assuntos
Sistemas de Liberação de Medicamentos , Pirimidinas/administração & dosagem , Absorção Cutânea , Adesivo Transdérmico , Administração Cutânea , Animais , Disponibilidade Biológica , Tamanho da Partícula , Ratos , Ratos Wistar , Pele/metabolismo
8.
Pharmaceutics ; 13(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067893

RESUMO

To avoid the first-pass metabolism of avanafil (AVA) and its altered absorption in the presence of food after oral administration, this study aimed to investigate the potential of TPGS-based mixed micelle (MM)-loaded film for transdermal delivery and the enhancement of bioavailability. A Box-Behnken design was employed to optimize the permeation behavior of AVA from the transdermal film across the skin. The variables were the hydrophile-lipophile balance (HLB) of the surfactant (X1), the concentration of mixed micelles (MMs) in the film (X2), and the concentration of the permeation enhancer (X3). The initial permeation of AVA after 1 h (Y1), and the cumulative permeation of AVA after 24 h (Y2) were the dependent variables. Ex vivo studies were carried out on freshly isolated rat skin to investigate the drug's permeation potential and results were visualized using a fluorescence laser microscope. Moreover, the pharmacokinetic behavior after a single application on male Wistar rats, in comparison with films loaded with raw AVA, was evaluated. The results showed that the optimum factor levels were 9.4% for the HLB of the surfactant used, and 5.12% MMs and 2.99% penetration enhancer in the film. Imaging with a fluorescence laser microscope indicated the ability of the optimized film to deliver the payload to deeper skin layers. Furthermore, optimized AVA-loaded TPGS-micelles film showed a significant increase (p < 0.05) in the Cmax of AVA and the area under the AVA plasma curve (approximately three-fold). The optimized AVA-loaded TPGS-MM film thus represents a successful delivery system for enhancing the bioavailability of AVA.

9.
Dose Response ; 18(3): 1559325820945164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782450

RESUMO

Glimepiride (GMD) is a hypoglycemic agent that has variation in bioavailability for its unexpected absorption. Glimepiride was formulated in a buccal film loaded with a nanobased formulation to enhance its absorption via buccal mucosa. Nanostructured lipid carriers (NLCs) and d-α-tocopherol polyethylene glycol 1000 succinate-based micelles enhance GMD solubility and improve its permeation through the buccal mucosa. The formulation variables were optimized using a Box-Behnken design. These factors, such as the percent of micelles relative to NLC (X 1), the percent of Carbopol (X 2), and the percent of permeation enhancer (X 3), were investigated for their effect on the initial release (Y 1) and the cumulative release after 6 hours (Y 2). The optimum levels for X 1, X 2, and X 3 were 100%, 0.05%, and 1.8%, respectively. The optimized formulation revealed that the permeation of GMD from the film was in favor of micelles. This optimized film was then coated with ethyl cellulose to direct the release only through the buccal mucosa. The optimized unidirectional GMD transmucosal film showed a release of 93.9% of GMD content at 6 hours compared to 60.41% of GMD release from the raw GMD film. This finding confirmed the suitability of transmucosal delivery of GMD via the buccal mucosa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA